Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(3): e10496, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206207

RESUMO

Noninvasive delivery of near-infrared light (IRL) to human tissues has been researched as a treatment for several acute and chronic disease conditions. We recently showed that use of specific IRL wavelengths, which inhibit the mitochondrial enzyme cytochrome c oxidase (COX), leads to robust neuroprotection in animal models of focal and global brain ischemia/reperfusion injury. These life-threatening conditions can be caused by an ischemic stroke or cardiac arrest, respectively, two leading causes of death. To translate IRL therapy into the clinic an effective technology must be developed that allows efficient delivery of IRL to the brain while addressing potential safety concerns. Here, we introduce IRL delivery waveguides (IDWs) which meet these demands. We employ a low-durometer silicone that comfortably conforms to the shape of the head, avoiding pressure points. Furthermore, instead of using focal IRL delivery points via fiberoptic cables, lasers, or light-emitting diodes, the distribution of the IRL across the entire area of the IDW allows uniform IRL delivery through the skin and into the brain, preventing "hot spots" and thus skin burns. The IRL delivery waveguides have unique design features, including optimized IRL extraction step numbers and angles and a protective housing. The design can be scaled to fit various treatment areas, providing a novel IRL delivery interface platform. Using fresh (unfixed) human cadavers and isolated cadaver tissues, we tested transmission of IRL via IDWs in comparison to laser beam application with fiberoptic cables. Using the same IRL output energies IDWs performed superior in comparison to the fiberoptic delivery, leading to an up to 95% and 81% increased IRL transmission for 750 and 940 nm IRL, respectively, analyzed at a depth of 4 cm into the human head. We discuss the unique safety features and potential further improvements of the IDWs for future clinical implementation.

2.
IUBMB Life ; 73(3): 554-567, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33166061

RESUMO

Near-infrared light (IRL) has been evaluated as a therapeutic for a variety of pathological conditions, including ischemia/reperfusion injury of the brain, which can be caused by an ischemic stroke or cardiac arrest. Strategies have focused on modulating the activity of mitochondrial electron transport chain (ETC) enzyme cytochrome c oxidase (COX), which has copper centers that broadly absorb IRL between 700 and 1,000 nm. We have recently identified specific COX-inhibitory IRL wavelengths that are profoundly neuroprotective in rodent models of brain ischemia/reperfusion through the following mechanism: COX inhibition by IRL limits mitochondrial membrane potential hyperpolarization during reperfusion, which otherwise causes reactive oxygen species (ROS) production and cell death. Prior to clinical application of IRL on humans, IRL penetration must be tested, which may be wavelength dependent. In the present study, four fresh (unfixed) cadavers and isolated cadaver tissues were used to examine the transmission of infrared light through human biological tissues. We conclude that the transmission of 750 and 940 nm IRL through 4 cm of cadaver head supports the viability of IRL to treat human brain ischemia/reperfusion injury and is similar for skin with different skin pigmentation. We discuss experimental difficulties of working with fresh cadavers and strategies to overcome them as a guide for future studies.


Assuntos
Encéfalo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fototerapia/instrumentação , Fototerapia/métodos , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Cadáver , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Desenho de Equipamento , Feminino , Humanos , Raios Infravermelhos , Pessoa de Meia-Idade , Fibras Ópticas , Traumatismo por Reperfusão/terapia , Pele/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...